Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements.
نویسندگان
چکیده
Polytopic membrane proteins are inserted cotranslationally into target membranes by ribosome-translocon complexes. It is, however, unclear when during the insertion process specific interactions between the transmembrane helices start to form. Here, we use a recently developed in vivo technique to measure pulling forces acting on transmembrane helices during their cotranslational insertion into the inner membrane of Escherichia coli to study the earliest steps of tertiary folding of five polytopic membrane proteins. We find that interactions between residues in a C-terminally located transmembrane helix and in more N-terminally located helices can be detected already at the point when the C-terminal helix partitions from the translocon into the membrane. Our findings pinpoint the earliest steps of tertiary structure formation and open up possibilities to study the cotranslational folding of polytopic membrane proteins.
منابع مشابه
Translation and folding of single proteins in real time.
Protein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure. How...
متن کاملIn vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
A question of fundamental importance concerning protein folding in vivo is whether the kinetics of translation or the thermodynamics of the ribosome nascent chain (RNC) complex is the major determinant of cotranslational folding behavior. This is because translation rates can reduce the probability of cotranslational folding below that associated with arrested ribosomes, whose behavior is deter...
متن کاملN-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a pol...
متن کاملFrom peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects.
Ribosomes are ribozymes exerting substrate positioning and promoting substrate-mediated catalysis. Peptide-bonds are formed within a symmetrical region, thus suggesting that ribosomes evolved by gene-fusion. Remote interactions dominate substrate positioning at stereochemistry suitable for peptide-bond formation and elaborate architectural-design guides the processivity of the reaction by rotat...
متن کاملProbing nascent protein folding
Deciphering the mechanisms by which proteins fold remains a substantial challenge for structural biology. In particular, very little is known about cotranslational folding, a process in which folding begins as the nascent protein is still emerging from the ribosome. Recognizing the dearth of methods to study this early folding event, Clark and colleagues present a strategy to stall protein tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 36 شماره
صفحات -
تاریخ انتشار 2013